PRECISE-SG100K Flagship Projects | S/N | Project Title | Team | Aims of Project | | | |-----|---|--------------------------------|----------------------------------|--|--| | 1 | The SG100K cognitive | Lead PI: Dr Max Lam, Lee | Establish the biological | | | | | health programme | Kong Chian School of | underpinnings for cognitive | | | | | | Medicine, Institute of | function in diverse Asian and | | | | | Topic: Mental Health | Mental Health | global populations, | | | | | | | | | | | | | Co-Lead PI: Dr Jimmy Lee, | 2. Establish the biological | | | | | | Institute of Mental Health | convergence between cognitive | | | | | | | function and disease traits, and | | | | | | Co-Lead PI: Prof Liu | | | | | | | Jianjun, Acting Executive | 3. Establish epidemiological | | | | | | Director, Genome Institute | and genomic risk predictors of | | | | | | of Singapore | cognitive health. | | | | | | | S | | | | | Institutions involved: Lee | Kong Chian School of Medici | ne, Nanyang Technological | | | | | University, Institute of Mer | ital Health, National Neurosci | ence Institute, A*STAR Genome | | | | | Institute of Singapore | | | | | | | | T | | | | | 2 | The SG100K_Med | Lead PI: Dr Lim Weng | 1. Seek a deeper | | | | | Alliance - clinical | Khong, Duke-NUS Medical | understanding of genetic | | | | | genetics researchers | School | disease burden in major Asian | | | | | united for the analysis of | | populations through a | | | | | mendelian disease | Co-Lead PI: Dr Joanne | comprehensive analysis of | | | | | variation in SG100K | Ngeow, Lee Kong Chian | structural variation and short | | | | | | School of Medicine | tandem repeat expansions, | | | | | Topic: Mendelian | | | | | | | Diseases | Co-Lead PI: Dr Saumya | 2. Demonstrate how SG100K | | | | | | Jamuar, KK Women's and | data can resolve variants of | | | | | | Children's Hospital | uncertain significance, and | | | | | | | | | | | | | | 3. Explore impact of | | | | | | | polygenic backgrounds on | | | | | | | penetrance in autosomal | | | | | | | dominant conditions for under- | | | | | | | represented Asian populations. | | | | | Institutions involved: Del | O NI IS Modical School Lock | ong Chian School of Madiaina | | | | | | | ong Chian School of Medicine, | | | | | KK Women's and Children's Hospital, A*STAR Genome Institute of Singapore, Singapore National Eye Centre, Tan Tock Seng Hospital, National University of Singapore, National | | | | | | | _ · | • | . | | | | | Heart Centre Singapore, National Neuroscience Institute, Khoo Teck Puat Hospital, Nanyang Technological University | | | | | | | Trangang recimological Of | iivoraity | | | | | 3 | Identification of Asian- | Lead PI: Dr Liu Boxiang, | Perform multi-ethnic | | | | | specific genetic | National University of | meta-analysis of fat and lean | | | | | association with fat and | Singapore | muscle mass using SG100K | | | | | accordation with fat and | - Ciligaporo | and UKBB datasets, | | | | | | | and ONDD datasets, | | | | | lean muscle mass distribution Topic: Fat and Lean Muscle Mass | Co-Lead PI: A/P Sim Xueling, National University of Singapore Co-Lead PI: Prof Tai E Shyong, National University of Singapore | Mendelian randomisation analysis to identify the contribution of fat and lean muscle mass to cardiometabolic diseases, Colocalisation analysis to identify risk genes affecting fat and lean muscle mass, and Conduct functional validation studies of identified genetic loci. | |---|--|--|---| | | Institutions involved: Nat | ional University of Singapore | | | 4 | HLA alleles and its association with auto- immune diseases and pharmacogenomics in multi-ancestral Asian populations Topic: Human leukocyte antigen | Lead PI: A/P Sim Xueling, National University of Singapore Co-Lead PI: Dr Leong Khai Pang, Tan Tock Seng Hospital Co-Lead PI: Dr Wharton Chan, Duke-NUS Medical School | Generate a high-resolution human leukocyte antigen (HLA) reference panel in Asian populations, Generate frequencies of HLA alleles and haplotypes in Asian populations for local reference and for global population comparisons, and Conduct association analyses of HLA alleles in outcomes including auto-immune diseases and pharmacogenomic responses. | | | Institutions involved: National University of Singapore, Tan Tock Seng Hospital, Duke-NUS Medical School | | | | 5 | Unravelling the determinants of kidney health in a multi-ethnic Asian population Topic: Kidney Disease | Lead PI: Dr Yeo See Cheng,
Tan Tock Seng Hospital
Co-Lead PI: Prof John
Chambers, Lee Kong Chian
School of Medicine | Determine prevalence of chronic kidney disease (CKD) among adults Examine association of CKD with genetic, clinical and socio-behavioural predictors, Examine relative contribution of key predictors | | | | | across different sub- | |---|---|------------------------------|-----------------------------------| | | | | population, and | | | | | | | | | | 4. Develop and validate an | | | | | integrated risk score for the | | | | | development of CKD in a | | | | | representative multi-ethnic | | | | | Asian population-based cohort | | | | | in Singapore. | | | | | III Siligapore. | | | Institutions involved: Tan | Tock Seng Hospital, Lee Kong | Chian School of Medicine | | 6 | The high variability of | Lead PI: Prof Liu Jianjun, | Generate SG100K genome | | 0 | tandem repeats offers | A*STAR Genome Institute | wide tandem repeats (TR) | | | - | | | | | insights into population | of Singapore | variation catalogue and | | | diversity and may explain | | characterisation their | | | the missing heritability of | Co-Lead PI: Dr Nicolas | respective prevalence in Asian | | | complex neurological | Bertin, A*STAR Genome | populations, and | | | and neurocognitive | Institute of Singapore | | | | disorders in Asian | | 2. Characterise | | | populations | Co-Lead PI: Dr Lim Weng | contributions of TR variations to | | | | Khong, Duke-NUS Medical | the aetiology of complex | | | Topic: Tandem Repeats | School | neurological and | | | | | neurocognitive disorders. | | | | | | | | Institutions involved: A*STAR Genome Institute of Singapore, Duke-NUS Medical | | | | | School, National Neurosci | ence Institute | | | | | | | | 7 | An integrated | Lead PI: Dr Janice Goh, | 1. Evaluate the occurrence | | | pharmacoeconomic- | A*STAR Bioinformatics | of known drug-gene | | | pharmacokinetic | Institute | interactions based on EHR data | | | framework for prioritising | | and its impact on efficacy and | | | and testing clinically | Co-Lead PI: A/P Wee Hwee | toxicity, | | | important drug-gene | Lin, National University of | | | | interactions | Singapore | 2. Explore genotype-drug | | | | 3-7 | response associations using | | | Topic: | Co-Lead PI: Dr Nicolas | SG100K and linked EHR | | | Pharmacogenomics | Bertin, A*STAR Genome | datasets augmented by a | | | Filatifiacogenomics | Institute of Singapore | | | | | montate of offigapore | dedicated pipeline for | | | | | haplotyping highly polymorphic | | | | | drug metabolising enzyme | | | | | CYP2D6, and | | | | | 2 Davidon o | | 1 | | | 3. Develop a | | | | 1 | pharmacokinetics-informed | | | | | | | | | | framework for evaluating and | | | | | | | | action to make dose recommendations | | | |--|---|--|--| | Institutions involved: A*STAR Bioinformatics Institute, National University of Singapore, A*STAR Genome Institute of Singapore | | | | | oss School | Determine age-related incidence of clonal haematopoiesis (CH) among our three major ancestry groups, Correlate CH status with clinical metadata, measures of ageing and disease incidence, and disease-related variables including biomarkers, Discover novel genetic associations with CH, Integrate functional genomics for novel Asian CH driver mutation discovery and validation, and Correlate CH status with cell clusters and gene expression signatures in the | | | | 6 | Lead PI: Prof Ong Sin Tiong, Duke-NUS Medical School Co-Lead PI: Prof Ashok Venkitaraman, National University of Singapore Co-Lead PI: Prof Chng Wee Joo, National University of Singapore Co-Lead PI: Prof John Chambers, Lee Kong Chian School of Medicine Co-Lead PI: Dr Nicolas Bertin, A*STAR Genome | | | ## **PRECISE-SG100K Driver Projects** | S/N | Project Title | Lead PI | Institution | |-----|--|--------------|--------------------------| | 1 | Computation of genome-wide LD scores and | Li Jingmei | A*STAR Genome Institute | | | matrices from the SG100K resource | | of Singapore | | 2 | Chronic liver disease is a significant risk | Mark Chan | National University | | | factor for adverse cardiometabolic outcomes | | Hospital | | 3 | Nonlinear methods for genomic association | Liu Dianbo | National University of | | | analysis of eye diseases | | Singapore | | 4 | Advancing the understanding of biological | Yew Yik Weng | National Skin Centre | | | mechanisms influencing chronic | | | | | inflammatory skin diseases | | | | 5 | Mood and diet in patients with irritable bowel | Kuang Ziyang | Tan Tock Seng Hospital | | | syndrome (IBS) in Singapore | Jonathan | | | 6 | The contribution of genetics to dietary habit | Theresia | Lee Kong Chian School of | | | and its relation to adiposity and | Mina | Medicine | | | cardiometabolic diseases in multiethnic | | | | | Asian population | | | | 7 | A structural variation catalogue across three | Joanna Tan | A*STAR Genome Institute | | | ancestrally diverse Singaporean populations | Hui Juan | of Singapore | | 8 | Genome-wide association study and | Joseph Lo | Woodlands Health | | | population-based evaluation of patients with | | | | | diabetic foot ulcers | | | | 9 | The SG100K_cancer and aging workgroup: | Joanne | Lee Kong Chian School of | | | Developing risk models for cancer | Ngeow | Medicine | | | associations | | | | 10 | Genetic susceptibility of age-related hearing | Liu Jianjun | A*STAR Genome Institute | | | loss | | of Singapore | | 11 | Evaluating the promise and perils of | Huang Jian | A*STAR Singapore | | | glucagon-like peptide-1 (GLP-1) receptor | | Institute for Clinical | | | agonist: a deep dive into therapeutic | | Sciences | | | potentials and adverse effects | | | | 12 | Unravelling the pathogenesis of inflammatory | Sunny Wong | Lee Kong Chian School of | | | bowel disease and associated immune- | | Medicine | | | mediated disorders in the Singaporean | | | | | population | | | | 13 | Genetics of allergic diseases and acne | Chew Fook | National University of | | | vulgaris in the Singapore population: | Tim | Singapore | | | validation and functional characterisation of | | | | | candidates | | | | 14 | Modulation of cholesterol 7α-hydroxylase | Ho Han Kiat | National University of | |----|--|---------------|--------------------------| | | (CYP7A1) activity as an orthogonal approach | | Singapore | | | to the management of hypercholesterolemia | | 0515 | | 15 | Multi-omics data analysis for novel | Mu Yuguang | Nanyang Technological | | | depression mechanisms using deep learning | | University | | | tools | | | | 16 | Asian-specific Parkinson's disease-linked | Tan Eng King | National Neuroscience | | | genetic risk variants and systemic clinical | | Institute | | | outcomes | | | | 17 | Physiological, environmental and genetic | Neerja | A*STAR Bioinformatics | | | determinants of heterogeneity in | Karnani | Institute | | | Singaporeans' health span | | | | 18 | Portability of catalogued polygenic risk | Pierre-Alexis | A*STAR Genome Institute | | | scores across ancestrally diverse | Goy | of Singapore | | | Singaporean populations | | | | 19 | Advancing Asian-centric liver disease | Tan Nguan | Lee Kong Chian School of | | | treatment: machine learning applications in | Soon | Medicine | | | MASLD and MetALD precision medicine | | | | 20 | Unravelling the correlation between | Teh Bin Tean | National Cancer Centre | | | sarcopenia with lifestyle, genetics, and | | Singapore | | | comorbid diseases | | | | 21 | Young-onset obesity and determinants of | Yusuf Ali | Lee Kong Chian School of | | | cancer prevalence | | Medicine | | 22 | Implications of alternative splicing of voltage- | Soong Tuck | National University of | | | gated calcium channels in schizophrenia | Wah | Singapore | | 23 | Exploring the impact and origins of somatic | Tan Kar-Tong | National University of | | | mutagenesis in cardiovascular disease | | Singapore | | 24 | Alport syndrome in the Singapore population: | Ng Kar Hui | National University of | | | an under-recognised kidney disease? | | Singapore | | 25 | Risk prediction for congenital and early-onset | Joshua Tay | National University of | | | hearing loss | | Singapore | | 26 | Biological age clocks for multiple organ | Andrea B. | National University of | | | systems and the lifestyle and genetic risk | Maier | Singapore | | | factors of advanced biological age | | | | 27 | Identification of risk factors for | Patrick Tan | Duke-NUS Medical | | | gastrointestinal cancers through analysis of | | School | | | genetic and phenotypic data | | | | 28 | Genomic associations of COVID-19 | Kelvin Bryan | Ministry of Health | | | susceptibility & severity in Singapore | Tan | |