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Structural variants (SVs) are signi�cant contributors to inter-individual genetic variation associated with traits and diseases. Current

SV studies using whole-genome sequencing (WGS) have a largely Eurocentric composition, with little known about SV diversity in

other ancestries particularly from Asia. Here, we present a WGS catalogue of 152,655 SVs from 8,392 Singaporeans of East Asian,

Southeast Asian and South Asian ancestries, of which ~75% (113,446 SVs) are novel. We show that Asian populations can be

strati�ed by their global SV patterns and identi�ed 82,003 novel SVs that are speci�c to Asian populations. 38% of these novel SVs

are restricted to one of the three major ancestry groups studied (Indian, Chinese or Malay). We uncovered SVs affecting ACMG-

de�ned clinically actionable loci. Lastly, by identifying SVs in linkage disequilibrium with single-nucleotide variants, we demonstrate

the utility of our SV catalogue in the �ne-mapping of Asian GWAS variants and identi�cation potential causative variants. These

results augment our knowledge of structural variation across human populations, thereby reducing current ancestry biases in global

references of genetic variation a�icting equity, diversity and inclusion in genetic research.

Human genomic variation plays a critical role in health and disease, making its study a vital area of biological and medical

research1,2. To improve our understanding of genetic variation across diverse human genomes and populations, international

consortia such as the 1000 Genomes Project3 (1KGP), Genome Aggregation Database (gnomAD)4, and national efforts such as the

U.K. 100,000 Genomes Project5 and NIH’s All of Us program6 have reported large-scale population-based sequencing efforts to

comprehensively delineate common and rare genetic mutations across different geographies and ancestry groups. Currently, most of

these studies have focused primarily on base-pair level variations such as single nucleotide polymorphisms (SNPs) and short

insertions/deletions (indels)3,4,7. Recently, structural variants (SVs) have emerged as another important source of variation8,9. SVs

are genome rearrangements >50bp and can be classi�ed into different classes such as deletions, duplications, insertions (including

mobile element insertions), translocations and inversions10. Different classes of SVs have been proposed to arise through a variety

of mechanisms, including non-allelic homologous recombination or mobile element insertion events11.

With the availability of whole-genome sequencing (WGS) and development of SV calling algorithms, researchers are increasingly

leveraging short-read WGS data to characterise the spectra of human SVs. In 2015, the 1000 Genome Project12 analyzed 2,504 low-

pass genomes (~7x coverage) to discover 68,818 SVs affecting 2.5x more base pairs in the genome compared to SNPs. The

gnomAD-SV project (gnomAD)10 identi�ed 335,470 SVs from 14,891 WGS samples, clarifying the impact of SVs in different portions

of the genome and generating SV catalogues to facilitate identi�cation of SVs associated with medical and phenotypic traits. Some

phenotypically/medically relevant SVs include Chr17p11.2 duplications leading to PMP22 gene overexpression and Charcot-Marie-

Tooth disease (an inherited neurological disorder)13, and Chr7 deletions affecting the ELN (Elastin) gene associated with Williams

neurodevelopment syndrome14. Some SVs may be pleiotropic, such as the aforementioned Chr7 deletions which are associated with

autism15, schizophrenia16 and cancer17. Knowledge of SVs can also improve our understanding of human evolution, as some SVs

display population and ancestry-speci�c patterns10,12. For instance, amylase, a key enzyme involved in the digestion of starch has a

higher copy number in Asian populations where rice (starch) is a staple food18. These studies highlight the importance of

characterising the diversity of SV landscapes on a global scale.

Asia accounts for 60% of the world population, however, many of the current large-scale SV pro�ling projects have focused on

individuals of European ancestry, resulting in an under-representation of SVs re�ective of Asian populations (gnomAD: 1,304 Asian

genomes; 8%, 1000 Genomes Project: 993 Asian genomes). Moreover, despite recent efforts to close this gap, current SV studies of

Asian populations are still of limited sample size and have focused on single ancestry groups19,20.

Singapore is a multi-ancestry country populated by individuals of Indian, Chinese and Malay ethnicity due to its immigration history.

Majority of the residents (~74%)21 in Singapore are Chinese, who are mainly descendants of Han Chinese from the southern

provinces of China22. Malays represent 13.6%21 of the population forms the second largest ethnic group in Singapore. The Malay

community in Singapore are mainly descendants of Austronesian people in Southeast Asia, particularly from Malaysia and

Indonesia. Lastly, Indians form the third largest ethnic group in Singapore. Majority of the Indians in Singapore are descendants of

Indian migrants from south-eastern part of India22. Given the genetic diversity of the population, Singapore can serve in the �rst
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approximation as a snapshot of East Asian, South-East Asia, and South Asia populations, and is uniquely suited for cataloguing

Asian SV landscapes and genomic variation.

The Singapore Genome Variation Project (SGVP)22, the SG10K_Health23 and the SG10K_med24 projects, which focussed on small

variants (SNP and lesser than 50bp long indels) have previously demonstrated the value of Singaporean genomes for precision

medicine. Here, we describe one of the �rst and to our knowledge the largest multi-ancestry study of SVs in Asians. Using WGS data

from 8,392 individuals (SG10K_Health) along with specialized SV-calling tools, we identi�ed and characterized SVs in these three

Asian populations and related these SVs to regulatory and biological effects. Our results contribute to the growing body of research

on SVs and �ll a critical gap in deciphering the genomic variation landscape across Asian populations.

We analysed Illumina short-read WGS data of 9,770 samples from the SG10K_Health study23, comprising participants of Chinese

(58%), Indians (24%) and Malays (18%) ethnicities. After CRAM-level quality control (QC) and removing samples failing at least 1 of 9

QC metrics (Methods), 8,392 samples were retained. This data set is subsequently referred to as SG10K Structural Variant release 1.3

(“SG10K-SV-r1.3”). Besides Chinese and Indians which other groups have studied19,20, SG10K-SV-r1.3 contains 1,620 individuals of

Malay ancestry ( ), a population which have to date not been included in previous large population-based SV

studies10,12.

The SG10K-SV-r1.3 dataset comprises multiple sub-cohorts sequenced at heterogeneous depths and using different library

construction methods, which can in�uence SV detection accuracy ( ). To ensure robust SV analysis and to

reduce technical confounding factors, we �rst focused on a discovery cohort of 5,487 individuals’ derived WGS libraries both

constructed (PCR plus) and sequenced at an average depth of 15x in a consistent fashion. Other datasets, which included 1,523

individuals sequenced at a depth of 15x using a PCR-less WGS library construction method (referred to as “15x_validation”) and

1,922 individuals sequenced at a depth of 30x using a PCR-employing WGS library construction method (referred to as

“30x_validation”) were used as validation datasets to ensure that results observed in the discovery dataset are reproducible. Even

when con�ned to the discovery cohort alone, this study represents one of the largest Asian SV studies to date, covering over 4.21

times as many individuals of Asian ancestries as previous studies ( ).

We focused on the three most common SV types: deletions, insertions, and duplications ( , ,

Methods). Due to their distinct genomic properties, it is challenging to accurately identify SVs using a single analytic tool25, and most

previous SV cataloguing efforts have employed a combined suite of SV class-specialized algorithms10,12. In this study, we employed

Manta26 to identify deletions and insertions separately in single samples, followed by SVimmer27 to obtain a putative cohort-wide

consensus set. Individual-level genotype calls within this uniformly-de�ned discovery SV set were then re�ned using Graphtyper228.

In addition, to address previously-reported limitations of these tools29, we also used MELT30, an algorithm specially designed for

identifying mobile element insertion (MEIs) events.

As the Manta-SVimmer-Graphtyper SV pipeline relies solely on discordant read pairs and split-read alignments, it has inherent

limitations to accurately detect duplication events created by the presence of tandem repeat sequences (e.g., microsatellites and

minisatellites)31,32. We thus complemented the above algorithms with SurVIndel233, an in-house developed algorithm that can detect

duplication events at high sensitivity ( ). To demonstrate the robustness of SurVindel2, we assessed false discovery rate

(FDR) and true positive (TP) statistics for duplications relative to Manta-SVimmer-Graphtyper, against a truth set of high quality SVs

obtained by haplotype-resolved long-read sequencing of a selected subset of 1000 Genomes Project analyzed samples34. We

measured an average per-sample duplication identi�cation FDR of 12% and 36% for SurVindel2 and Manta-SVimmer-Graphtyper,

respectively. SurVIndel2 yielded a better sensitivity than Manta-SVimmer-Graphtyper ( ).

Furthermore, the gains in sensitivity were more pronounced for tandem repeats ( ).

Using this pipeline, we identi�ed 152,655 SVs comprising 35,584 insertions (including MEIs), 84,607 deletions, and 32,464

duplications. Approximately 75% of these events were novel ( ) with respect to gnomAD-SV10, re�ecting the potential for new

discoveries by analysing underrepresented Asian genomes (a more detailed comparison of SG10K-SV-r1.3 to gnomAD-SV is reported
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in later sections). We also detected 84,336 and 103,183 SG10K-SV-r1.3 SVs in the 15x PCR minus and 30x PCR plus validation

dataset, respectively.

On average, each SG10K_Health individual harboured SVs covering 0.41% of the genome, with 1,905 insertions (0.017%), 2,486

deletions (0.367%), and 1,103 duplications (0.030%). These �gures were consistent across all three ancestries ( ). Compared

to gnomAD-SV, we detected fewer insertions and deletions per individual (insertions: 1,905 in SG10K_Health vs 2,612 in gnomAD-SV;

Deletions: 2,486 vs 3,505), likely due to the higher sequencing depth of gnomAD samples (32x 10). Con�rming this hypothesis, we

detected comparable insertion/deletion counts per individual in our 30x_validation dataset (2,751/5,692; ).

However, despite lower sequencing depth in our discovery cohort, we detected comparable numbers of duplications compared to

gnomAD-SV (1,103 vs 1,346), likely re�ecting the improved sensitivity of the SurVIndel2 duplication-detection pipeline. Similar to

previous studies10, the majority (>70%; 107,548) of deletions, insertions and duplications were rare events with allele frequencies (AF)

less than or equal to 1% ( ). Nevertheless, we identi�ed 700 SVs with allele frequency greater than

0.95 in our discovery cohort; in these cases, the reference genome bears the minor allele.

While most detected SVs were small (10kbp; ), we identi�ed 6,444 deletions and 2,065 duplications longer than 10kbp.

There was a striking abundance of SVs at 300bp, 2kb and 6kb ( ). The 300bp and 6kb insertions corresponded to Alu and

LINE1 elements respectively, the two most abundant classes of transposable elements in the human genome (~11%35 and ~17%36

of the genome). The 2 kb SVs represent composite SVA (SINE, Variable Number Tandem Repeat, and Alu) transposons. These results

highlight the pervasive contribution of repeat elements (Alu, LINE1, SVAs) in sculpting human genomic variation, and high-level

similarities between our SV catalogue and other studies12.

SVs have been reported to cluster at speci�c genomic regions (“hotspots”). Several factors have been proposed to in�uence the

location of SV hotspots, such as segmental duplications and the local presence of transposable elements37. These factors may

contribute to SV formation due to their higher propensity for DNA breakage and repair, with local transposable elements increasing

the likelihood of non-allelic homologous recombination (NAHR)38. To identify SV hotspots, we employed hotspotter39

(bandwidth:200,000, num.trial=10,000, pval=5 X 10-3) and identi�ed 331 regions containing higher-than-expected SV densities

( ). Together, these 331 regions affected ~303Mbp, in line with previous �ndings34. Notably, 28.1% (93 out of

331) of the hotspot regions are located within 5Mbp of the ends of the chromosomes as well as near the centromeric regions.

Excluding these sub-telomeric and centromeric hotspots, 122 hotspots were unique to SG10K-SV compared to gnomAD-SV. For

example, we identi�ed a 725,560bp (chr12:124034930-124760490) hotspot region containing 89 SVs. This hotspot overlaps the

NCOR2 (Nuclear receptor corepressor 2) gene, a corepressor that is frequently altered in prostate cancer40.

To assess the impact of SG10K-SV-r1.3 on different categories of functional genomic regions, we overlapped the SVs with gene

regulatory elements identi�ed by ENCODE and the Epigenomics Roadmap project41. Regulatory elements surveyed included 926,535

putative regulatory elements annotated as distal enhancers (667,599), proximal enhancers (141,830), insulators (CTCF sites, 56,766),

promoters (34,803), poised elements (exhibiting DNase I hypersensitivity but are likely functionally gated by additional trans-acting

signals), and non-promoter K4me3 regions (25,537)41.

Common deletions (AF≥1%) were signi�cantly depleted at putative enhancers and insulators, consistent with a model of negative

selection acting on alterations affecting gene expression ( ). In contrast, rare (4592; 1%> AF >=0.1%) and ultra-rare (12,705;

AF <0.1%) deletions did not exhibit similar depletion signals - it is possible that these latter SVs may have arisen later in human

evolution with insu�cient time for purifying selection. Promoter regions exhibited a trend (albeit not signi�cant) for enrichment in

common deletions, duplications and insertions, perhaps re�ecting the higher GC content of promoters and susceptibility to errors in

DNA replication42. Common duplications were also signi�cantly depleted at distal and proximal enhancers ( ) again

suggesting the action of purifying selection, and ultrarare duplications were also depleted at enhancers, though not as strongly as

common duplications. Following a similar qualitative trend, common insertions (MEIs) were more strongly depleted at enhancers,

insulators and K4me3 regions than ultrarare insertions.
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Unexpectedly, we observed common duplications being enriched at annotated non-promoter H3K4me3 regions. To deepen this

observation, we examined the intersect of 81 non-promoter H3K4me3 regions overlapping common duplications, and found that they

were highly and signi�cantly enriched for tandem repeats relative to all 25,537 H3K4me3 regions (fold enrichment: 4.6 :

hypergeometric p-value: 2.45 x 10-23). We speculate that since read mapping artifacts are common at tandem repeats, it is possible

that these genome duplications may have contributed, at least in part, a degree of artifactual H3K4me3 ChIP-seq peaks. These

results highlight how more re�ned genomic annotations taking SVs into account can improve the accuracy of other orthogonal data

sets such as regular ChIP-seq maps.

We then analyzed gene bodies (UTRs, CDS, exons or introns). SVs of all three categories were strongly depleted at gene bodies,

including 3'UTRs, 5'UTRs, CDS, exons, and introns ( ). For example, common insertions were depleted 11-fold at coding

exons, against re�ecting high selection pressure on coding sequences. Similar to enhancers, rare and ultrarare SVs showed weaker

depletion patterns in exons of all types. Interestingly, intronic regions showed no deviations from background, except for a modest

elevation in rare and ultrarare insertions. This may re�ect the increased propensity of certain MEIs families to insert into the gene

bodies of actively transcribed genes or GC-rich regions43,44.

SVs deleting gene regions may cause complete or partial loss of function (LOF) effects. Conversely, duplications may lead to gene

copy gain, augmenting gene dosage. Employing SVTK45 to assess the potential impact of the SG10K_Health SVs on protein-coding

regions, we identi�ed 5,438 SVs (3.5% of 152,655) with direct predicted impact on protein coding integrity ( ). Of these, 4,143

SVs resulted in likely gene LOF. LOF-associated SVs tended to occur at low allele frequencies (AF<1%). We identi�ed 1,023

duplications predicted to cause copy number gain of one or several consecutive protein-coding genes. Copy number gain events were

typically larger compared to LOF events (median size 96kb vs 4.6kb). These patterns are in line with gnomAD where the majority of

protein coding affecting SVs resulted in LOF, and copy gain events exhibited larger sizes.

We assessed the potential impact of SVs on clinically actionable genes, focusing 78 actionable genes (ACMG v3.146) associated

with highly penetrant and actionable genetic conditions. AnnotSV47 was used to identify SVs potentially affecting at least one ACMG

v3.1 gene. We found 35 SVs affecting coding sequence integrity in 21 clinically actionable ACMG genes. For example, we identi�ed

two separate 2.3kb and 9.4kb deletions in 5 and 3 Chinese individuals, affecting TRDN ( ), encoding triadin and a key

component of the calcium release complex48. We also found, in 48 individuals (27 Chinese, 12 Indian, 9 Malay) a 134bp deletion

affecting DSG2 ( ), an essential component of desmosomes that provides mechanical strength and stability

to heart and skin tissues49. Both TRDN and DSG2 genes have been associated with severe cardiac dysfunction (catecholaminergic

polymorphic ventricular tachycardia (CPVT), and arrhythmogenic right ventricular cardiomyopathy (ARVC) respectively).

Re�ecting the novelty of the SG10K-SV-r1.3 catalog, 74.3% (113,446/152,655) of the catalog were not previously reported in

gnomAD-SV ( ). To compare the SG10K-SV-r1.3 cohort with gnomad-SV more stringently, we then applied a 50% call rate

cut-off across each population within SG10K_SV, resulting in 85,162 SVs not exhibiting any overlap with gnomAD-SV. We hereby refer

to these SVs as novel “Asian-speci�c" SVs. This included 47,064 deletions, 20,462 duplications, and 17,636 insertions. The majority

of novel Asian-speci�c SVs were detected at lower allele frequencies compared to SVs commonly found both in SG10K_SV and

gnomAD-SV ( ). Additionally, we identi�ed 39,209 SV events in SG10K-SV which overlaps gnomAD-SV events.

We further focused on this subset to identify events with a higher prevalence in Asian populations, employing Fst50 analysis on the

gnomAD-SV dataset as described in the Methods section. Using this approach, we further detected 32,085 events in gnomAD-SV

displaying such differences which overlaps with 14,198 SV in SG10K-SV dataset

Notable examples of Asian-speci�c events include a previously reported 2,903 bp deletion in intron 2 of the BIM gene, which is

associated with resistance to tyrosine kinase inhibitors51. This SV is present in gnomAD-SV at a higher AF in East-Asians compared

to other ethnicities (AF EAS: 7.37 x 10-2, AF others: 1.04 x 10-4). Another example comprises a rare 19.3kbp deletion spanning the

HBA1 and HBA2 genes, associated with α-thalassemia and detected more frequently in Asian populations (AF EAS: 9.93 x 10-3, AF

others: 1.04 x 10-4)20. It is worth noting that without the availability of SG10K-SV as a tool to enrich for Asian events, identifying

these SV AF differences solely through an internal comparison of the gnomAD-SV database would have been challenging due to the

large number of events in gnomAD-SV. Speci�cally, conducting an equivalent analysis on the entire gnomAD-SV database would
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have yielded 1,647 events with signi�cant AF differences between Asian and non-Asian populations. These 1,647 events represent

0.542% of the queried events, in contrast to the 21% (8,285/39,209) obtained when utilizing a comparison between SG10K-SV and

gnomAD-SV. This approach serves two important purposes. Firstly, it identi�es new events that had not been previously discovered,

which constitute the majority of our �ndings. Secondly, it provides an enhanced framework to facilitate the detection of Asian-

speci�c events within existing published resources.

We then investigated SV patterns distinctive to the three major Asian ancestries. Principal components analysis (PCA) on the full set

of SG10K_SV demonstrated ancestry-speci�c population clustering ( ), which was further replicated using either insertions,

deletions, or duplication events ( ). These results support pervasive differences across the three SV classes

contributing to population differentiation. 38% of SVs were seen in only one ancestry, 15% were shared across two ancestries, and

half of the SVs (47%) were in all three populations ( ). However, as the numbers of events detected as unique in a population

correlated with cohort size (  ) and were enriched for low-frequency SVs ( ), it remains

possible that some of these SVs may be present in other populations, but remain undetected due to low allele frequency.

To gain a more granular understanding of ancestry-speci�c SV patterns, we calculated �xation indexes (Fst)50 for each of the

detected events and assigned a signi�cance score to each observation using permutation analysis (see ). By examining the

resulting Fst trends, we found that SVs with extreme Fst values (0.7 and above) were mostly detected in small numbers of

individuals (call rate < 2%) not reaching signi�cance thresholds ( ). Of SVs exhibiting statistically signi�cant Fst values, we

identi�ed 18,076 SVs displaying ancestry-speci�c frequency patterns, comprising 8,346 deletions, 5,660 insertions, and 4,070

duplications (see ).

The set of 18,076 ancestry-speci�c SVs were further �ltered to those annotated to harbour functional consequences ( ). This

analysis yielded a subset of 143 ancestry-speci�c SVs, comprising 91 deletions, 47 duplications, and 5 insertions (

). By plotting AF trends for the top 50 events with highest Fst ( ), we observed ancestry-speci�c

events across a range of allele frequencies. SVs associated with Indian ancestry drove differences for the majority of the cases

(N=45/50). We also identi�ed 10 SVs for which the GRCh38 reference genome contained the minor allele (MAF>50% in at least one

population), underscoring the importance of moving beyond a single human genome reference52 to establish reference genomes

better re�ecting the genetic diversity of global human populations.

Curation of the 143 events con�rmed previously reported ancestry-speci�c SVs. For example, we observed a 27.6kbp deletion in the

ACOT1 gene, involved in fatty acid metabolism. This ancient deletion is marked by signi�cant AF differences between continents,

almost reaching �xation in Asian populations53. The ACOT1-associated deletion exhibited a lower AF in Indians (AF SG-Chinese:

0.873, AF SG-Indian: 0.532, AF SG-Malay: 0.769). Another example was a 32kbp deletion in CYP2A6, a member of the cytochrome

P450 (CYP-450) superfamily involved in drug metabolism54. This SV also exhibited signi�cantly lower AFs in Indians (AF SG-

Chinese: 0.139, AF SG-Indian: 0.045, AF SG-Malay: 0.171). A third example was a 21.5kbp duplication overlapping MPV17L2 and

RAB3A, present in gnomAD-SV East Asians but rare in other ancestries55. We observed a similar frequency for Chinese, with lower

AFs in Malay and Indians (AF SG-Chinese: 0.030, AF SG-Indian: 0.002, AF SG-Malay: 0.011). There was also a 204.4kbp duplication

overlapping multiple genes in chromosome 4, observed only in SG-Indians (AF SG-Chinese: 0, AF SG-Indian: 0.015, AF SG-Malay:

0.002). While not identi�ed in gnomAD-SV, we con�rmed detection of this SV in 12 individuals from the 1KGP dataset, all of South-

Asian ancestry.

Importantly, we also discovered previously unreported SVs. One such event was a 3kbp deletion overlapping AHNAK2, encoding a

nucleoprotein involved in calcium signalling. The AF of this SV was higher in Indians compared to Chinese and Malay (AF SG-

Chinese: 0.018, AF SG-Indian: 0.117, AF SG-Malay: 0.014). We also detected a 59bp deletion in TNNT3, which encodes Troponin T3, a

protein involved in muscle contraction and distal Arthrogryposis56,57. This event was detected with the highest AF in Malays (AF SG-

Chinese: 0.005, AF SG-Indian: 0.032, AF SG-Malay: 0.056). Other Malay-speci�c deletions involved OR2B2 (1.3kbp; AF SG-Chinese:

0.005, AF SG-Indian: 0.003, AF SG-Malay: 0.029) and FAM3B (1.6kbp; both with AF SG-Chinese: 0.002, AF SG-Indian: 0.002, AF SG-

Malay: 0.028). OR2B2 encodes an olfactory receptor, a gene family known for population strati�cation, whilst FAM3B encodes a

secreted cytokine-like protein involved in glucose metabolism and linked to type 2 diabetes. One more Malay speci�c insertion

included a 209 bp event overlapping CEACAM3 (AF SG-Chinese: 0.05, AF SG-Indian: 0.07, AF SG-Malay: 0.11), a cell adhesion
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molecule that plays a crucial role in the innate immune response to bacterial infections. Finally, we identi�ed a 12.2kbp duplication

overlapping CLPSL1 and CLPS, which encode enzymes involved in the digestion of dietary proteins. The AF of this duplication was

lower in Chinese compared to Malay and Indian individuals (AF SG-Chinese: 0.52, AF SG-Indian: 0.60, AF SG-Malay: 0.62). The

observed minor AF was greater than 50% in all three populations, indicating that this duplication is a common event. Collectively, our

analyses demonstrate that numerous population-speci�c SVs among Asians can be detected using SG10K-SV.

Finally, SVs are gaining prominence as potential genetic drivers of disease susceptibility, drug response and other phenotypes58. To

explore potential associations between SVs and biological phenotypes, we hypothesized that certain trait-associated lead SNPs

identi�ed by GWAS (GWAS-lead SNPs) might not (and indeed often do not) represent the actual causative variant. Conventional

GWAS analysis thus often requires pinpointing underlying causal variants using �ne-scale genetic mapping to assess variants

showing high linkage disequilibrium (LD) with lead SNPs. Since SVs are large variants in terms of genomic span, it is possible that

certain SVs in strong LD with GWAS lead SNPs might also be causative59.

To explore this possibility, we performed LD analysis between SG10K-SVs and previously reported SG10K_Health SNPs/short indels

inferred from WGS23. LD was computed for high-con�dence (call rate > 0.8) common (MAF>1%) SVs (n=6,453) and small variants

(n=9,206,351) located within a 1Mbp distance ( ). 14% of SVs were not in LD with any SG10K_Health small variants

(R2<0.2), suggesting that a substantial proportion of SVs represent genetic variability that might be overlooked in conventional

genetic association analyses. 4,047 of the 6,453 high-con�dence common SVs were in strong LD with 172,698 SG10K_Health SNPs

(R2>0.8). Of these, 748 SVs were in strong LD with 1,814 SG10K_Health SNPs matching lead SNPs from the EBI GWAS catalogue

(genomic location and allelic alteration), with 75 SVs (35 deletions, 4 duplications, and 36 insertions) in strong LD with 174 lead

SNPs from GWAS focused on Asian cohorts.  provides these 75 SG10K-SVs and their associated lead SNPs.

From the 75 SVs, we focused on the subset that overlapped exons, since they could most directly be assigned a functional

consequence. These included a predicted LOF deletion (chr1: 89,010,225-89,012,941) of exons 7 and 8 of GBP3 that was in strong

LD (R2=0.968) with a missense variant (C->R) in the same gene (rs17433780; ). Notably, rs17433780 is associated with

markers of subclinical atherosclerosis in Chinese individuals (P=2x10-6 60). While this missense SNP is certainly a candidate, our

analysis suggests that the linked LOF SV should also be considered a potential causal variant for subclinical atherosclerosis in this

locus.

GWAS-lead SNPs are often found in non-coding regions of the genome. Our analysis highlighted one exonic-associated SVs in high

LD with these non-exonic SNPs, where the former may represent underlying causal variants. For example, a predicted LOF SV

(chr11:55,264,123-55,271,064) deleting exons 2 to 6 of TRIM48 exhibited strong LD (R2=0.903) with an intergenic GWAS-lead SNP

(chr11:54,697,371; rs11532186) associated with altered glomerular �ltration rate. Notably, an integrative analysis of genetic

association and gene expression in a cohort of patients with reduced kidney function identi�ed TRIM48 among the top causal

candidates for urine metabolite variation61. These examples support the value of including SG10K-SVs in analyses of genetic drivers

of phenotypic variation in Asian cohorts. The full list of SVs in high LD with GWAS lead SNPs is reported in .

We generated a comprehensive catalogue of SVs in 8,392 Singaporeans containing 152,655 SVs. Compared to previous studies

analysing primarily populations of European ancestry, our samples enabled us to assess patterns of SV genetic diversity across Asia,

leveraging on Singapore as a diverse multi-ethnic community. In particular, little is known about the SV landscape in Malay

individuals. Malay is the third largest ethnic group in Asia. Individuals of Malay ethnicity are geographically distributed across

several countries in Southeast Asia, including Malaysia, Singapore, Java and Sri Lanka62. There are approximately 220 million

individuals of Malay ethnicity in the world, with Indonesia and Malaysia accounting for the majority. Previously, Wu et al.
investigated the population structure of the three Singaporean populations with the 1000G project populations using small variants

and reported an ancestral component that is largely speci�c to the Malays in Singapore7. This result indicates the importance of

including individuals of Malay ethnicity in large-scale population-based SV studies so as to uncover SVs unique to the Malay

community. Our study is the �rst population-scale SV study to include individuals of Malay ethnicity. Notably, we identi�ed several
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SVs enriched in individuals of Malay ethnicity. For example, we observed a 1.6kbp deletion in FAM3B, a gene involved in glucose

metabolism and linked to type 2 diabetes, with a higher allele frequency in Malays compared to Chinese and Indians. Previous

studies have characterized SVs in the Chinese (East Asian) and Indian (South Asian) populations10,12. However, the current study

provided a much more comprehensive catalogue of SVs for these populations by analysing a much large number of samples than

previous efforts. Overall, our �ndings reiterate the importance of creating a comprehensive population-speci�c database of SVs to �ll

the gap of our understanding of genetic diversity in Asian populations.

While clearly a �rst-generation catalogue, the SG10K-SV database allows us to identify Asian-speci�c variants. Given the large

number of Asian samples in our dataset, we demonstrate the ability to pinpoint novel variants that occur in higher frequency in the

Asian population but were missed in other large-scale population SV studies such as gnomAD-SV. In addition, the use of SG10K-SV

also enables us to identify variants that are highly prevalent in Asians within the existing public database. By calculating the Fst

between Asians and non-Asians for variants in gnomAD-SV alone, we detected 1,647 SVs, which shows signi�cant differences in

their allele frequencies between Asians and non-Asians. However, by incorporating data from SG10K-SV and identifying variants that

were shared by the two datasets, we detected 8,285 SVs in gnomAD-SV that showed signi�cant differences in their allele frequencies

between Asians and non-Asians. As such, we demonstrate that SG10K-SV can be used to complement existing SV catalogues to

identify Asian-speci�c variants.

In addition, due to the genetic diversity within the Singapore population, the SG10K-SV dataset enabled the detection of variants that

are unique to each of the three Asian populations. We identi�ed 18,076 SVs displaying ancestry-speci�c frequency patterns. We were

able to detect many SVs that were reported previously in Asian population. For instance, we observed a 21.5kbp duplication

overlapping MPV17L2 and RAB3A in gnomAD-SV East Asians. This duplication has a higher allele frequency in the Chinese within

SG10K-SV than in Malays and Indians. More importantly, we discovered previously unreported SVs that were more prevalent within

one of the ethnic groups. We found a 3kbp deletion overlapping AHNAK2, encoding a nucleoprotein involved in calcium signalling,

that occurs at a higher frequency in Indians than Malays and Chinese. We also identi�ed a 1.3kb deletion overlapping the FAM3B
gene, which encodes a secreted cytokine-like protein involved in glucose metabolism and linked to type 2 diabetes. This deletion has

a higher occurrence in Malay individuals compared to Chinese and Indians. We also identi�ed a 12.2kbp duplication overlapping

CLPSL1 and CLPS, which encode enzymes involved in the digestion of dietary proteins. This duplication has a high allele frequency

in the Indians and Malays compared to Chinese. Interestingly, the observed minor AF was greater than 50% in all three populations,

indicating that this duplication common within the Asian population. Our �ndings reiterate the importance of population-speci�c

reference data to reduce biases in genetic discovery.

Apart from identifying ancestry-speci�c variants, the SG10K-SV catalogue has also enabled us to identify potential SVs associated

with human phenotypes. Beyond SVs affecting gene function, integrating SG10K-SVs with SNPs enabled us to identify LD patterns

between these two categories of genomic variation (SVs and SNPs). Speci�cally, we found 75 SVs in strong LD with GWAS lead

SNPs from Asian cohorts. Of these 75 SVs, we identi�ed a GBP3 deletion in strong LD with a GWAS lead SNP that is associated with

subclinical atherosclerosis, demonstrating the value of the SG10K-SV database, which allows the identi�cation of potential causative

SVs that are in strong LD with GWAS lead SNPs associated with disease phenotypes in the Asian cohort.

Our study has several limitations. SV discovery is challenging, and the full spectrum of SVs in the human genome remains poorly

understood. The �ndings presented here are primarily derived from 15x short-read WGS and are clearly underpowered both in terms

of sequencing read length and sequence coverage to capture all possible SVs present in the Asian population. Existing algorithms

rely on sequencing coverage and split-reads from the short-read WGS data to detect SVs, and hence, it is impossible to identify the

exact coordinates and length of tandem duplicates and large insertions using short-read data. In addition, at present, our SV callers

captured only the three most commonly analysed SVs (deletions, insertions and duplications), but did not consider other SV classes

(inversions, translocation) that are also present in human genomes and are likely to have biological consequences. Using long-read

sequencing in the near future, either as a single modality or coupled with high-coverage short-read sequencing, will allow us to

identify substantially more SVs, clarify SVs in repetitive regions, and de�ne new classes of SVs. Notwithstanding these

shortcomings, the SG10K-SV dataset is, by far, the largest Asian SV database. This resource will be valuable to understanding the

genetic diversity of the Asian population and how these variations underpin health and disease in the Asian population.
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We processed WGS data collected from the SG10K_Health23 study. SG10K Health comprises alignments and variant calls for SNVs

and INDELs from 9 local cohorts, including 9,770 healthy individuals. Data generation involved WGS of blood DNA samples (Illumina

short-reads) and subsequent analysis following GATK best practices (GATK4 GRCh38)63 to generate individual sample level CRAM

�les. It also included QC checks intended to discard samples with poor sequencing quality (e.g. hard �lters for error rate and

contamination), unusual numbers of calls (e.g. MAD-based �lters on het/hom ratio), chromosome aneuploidies, and/or samples with

related individuals in the same cohort (see methods in Wong et al., 2023 for additional details).

Using an in-house developed pipeline, we calculated the coverage, alignment and GC bias metrics from the SG10K Health CRAMs. In

total, nine metrics were considered for downstream �ltering, chosen to represent the type of evidence used by SV calling algorithms:

Median_autosome_coverage: The median coverage in autosomes, excluding (i) bases in reads with low mapping quality (mapq

< 20); (ii) bases in reads marked as duplicates, and (iii) overlapping bases in read pairs; calculated with mosdepth64.

Mad_autosome_coverage: The median absolute deviation of coverage in autosomes after coverage �lters are applied (see

median_autosome_coverage); calculated with mosdepth64.

Pct_autosomes_1x: The percentage of bases that attained at least 1X sequence coverage in autosomes, after coverage �lters

are applied (see median_autosome_coverage); calculated with mosdepth64.

Pct_reads_aligned: The percentage of PF reads that align to the reference; calculated with picard AlignmentSummaryMetrics65.

Pct_reads_properly_paired: The percentage of reads that align as proper pairs; calculated with samtools stats66.

Median_insert_size: The median insert size of aligned reads; calculated with picard InsertSizeMetrics65.

Mad_insert_size: The median absolute deviation of insert sizes; calculated with picard InsertSizeMetrics65.

gc_dropout: Illumina-style GC dropout metric; calculated with picard GcBiasSummaryMetrics65.

at_dropout: Illumina-style AT dropout metric; calculated with picard GcBiasSummaryMetrics65.

In each cohort, we discarded samples outside 8 MAD from the median for at least one of the nine metrics considered. Such �lters led

to the exclusion of 1,378 samples, thus leaving 8,392 samples for downstream analysis.

Manta v1.6 was executed in the single sample mode to identify deletions and insertions in the discovery dataset. We used the default

parameters and further �ltered the single-sample VCF to retain (i) calls that pass �lters, (ii) with a length of 50bp or more and (iii) of

the selected variant types (deletions and insertions).

SV discovery from short read data is notedly a challenging task67. Moreover, since the majority of our dataset consists of 15X

genomes ( ), we expect lower sensitivity compared to what has been reported in higher-depth studies10. In

order to overcome these limitations, we have incorporated additional clustering and re-genotyping steps, which are known to improve

detection power in short-read-based studies. In brief, the goal is to aggregate all SV candidates identi�ed when evaluating each

sample individually (SV clustering), and then re-assess the original data for the presence/absence of these calls (SV re-genotyping).

Prior to clustering, we sought to discard any samples that displayed an unusual number of calls for any of the SV types considered,

by applying an 8-MAD �lter on a per-cohort basis, analogous to the strategy previously used during sample QC. For Manta, no

samples were discarded after applying such a �lter, suggesting that the upstream sample QC is already adequate to �ag unusual

samples. We then clustered SV candidates in each of the call sets obtained during the discovery step using svimmer27, which we ran

with default parameters to aggregate events across all samples in the discovery dataset. Lastly, we performed re-genotyping for each

sample using Graphtyper28 v2.5.1 with default parameters. We then retained calls made under the aggregated genotyping model for

downstream analysis.

We further enriched the annotations from Graphtyper2 with depth-based information by running Duphold v0.2.368 on each individual

sample. Subsequently, we �ltered calls using the following criteria: (i) For homozygous reference genotypes, we retain calls with

FORMAT/FT=="PASS".(ii) For heterozygous and homozygous alternate genotypes, we retain calls as follows: FILTER=="PASS" &
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FORMAT/FT=="PASS" & INFO/PASS_AC>0 & INFO/QD>12 & (INFO/ABHet>0.30 | INFO/ABHet<0) & (INFO/AC /

INFO/NUM_MERGED_SVS)<25 & INFO/MaxAAS>4 & ((INFO/SB>0.1 & INFO/SB<0.9) | INFO/SB<0). (iii) For deletions, we retain calls

with INFO/DHFFC < 0.7. Any genotype calls that did not pass the �lters mentioned above was set to null using Hail69.

MELT v2.2.230 was executed using MELT-Split with default parameters in a four-step process to identify different classes of mobile

element insertions (Alu, SVA, LINE1) in the SG10K-SV discovery set. First, indivAnalysis was used to identify MEI in each sample.

Second, GroupAnalysis was used to aggregate MEIs across all samples in the discovery dataset. Third, we performed re-genotyping

for each sample using the merged MEI information obtained from step 2 using Genotype feature in MELT. Lastly, MELT-Split uses the

MakeVCF function to �lter and merge MEIs information across all samples into a single VCF. The four-step MEI discovery was run

separately for each MEI class. We extract only variants that PASS the �lters indicated by MELT for downstream analysis.

For the two validation datasets, we used the output �le from GroupAnalysis, which contains aggregated MEIs across all samples in

the discovery dataset, to re-genotype MEIs in each sample in the two validation datasets. Lastly, we used the MakeVCF function to

�lter and merge MEIs across all samples into a single VCF. We extract only variants that PASS the �lters indicated by MELT for

downstream analysis.

We ran SurVIndel233 with default parameters on each sample in the discovery set and only retained tandem duplications.

Duplications were left-aligned using the normalised utility in SurVIndel2. Then, we clustered the duplications as recommended in the

manuscript of SurVIndel2, in order to obtain a set of duplications in the studied population.

Next, we used the companion re-genotyper of SurVIndel2, SurVTyper, to genotype each duplication in each sample. The genotyped

duplications for each sample were merged using bcftools merge. Finally, we set calls such that FORMAT/FT != PASS as not

genotyped.

For the last step of the SV pipeline, we used a combination of regional, call and event-speci�c �lters to further re�ne the outputs of

the re-genotyping step, aiming to reduce the number of false positives in our dataset. Region-speci�c �lters were applied consistently

across all samples before generating the �nal SG10K-SV release 1.3 to (i) retain events in autosomal contigs (chr1-22) and (ii)

exclude those that occur in centromeres, telomeres, heterochromatin region70 and regions in the primary assembly that overlap with

ALT contigs.

Benchmarking structural variations (SVs) generated by short-read methods is often done using long-read based ground truth

catalogues. The Human Genome SV Consortium (HGSVC) released HGSVC2, a comprehensive set of SVs detected in 35 samples in

the 1000 Genome Project using PacBio HiFi reads34. Additionally, CRAM �les at 30x coverage are available for all the samples71. We

used 10 samples for our benchmarking effort. We downsampled these 10 samples to a sequencing depth of 15x using samtools to

mimic our discovery set. Next, we ran our pipeline on a dataset comprising 5,487 discovery samples plus the 10 benchmarking

samples. Finally, we obtained a call set for each sample by retaining SVs with an allele count of at least 1 and an FS value of PASS.

We used an in-house tool (https://github.com/Mesh89/SVComparator) to compare, for each sample, the predicted SVs with the set

of SVs reported in HGSVC2. Our pipeline reports tandem duplications and insertions separately, while HGSVC2 only reports deletions

and insertions; tandem duplications are considered insertions. For this reason, we could not measure the sensitivity of our

duplications and insertions separately.

One of the signi�cant challenges when generating a dataset of SVs for a large population is maintaining a low level of noise. Our

benchmarking efforts show that our call set is precise (average precision is 0.73 for deletions, 0.88 for duplications and 0.79 for

insertions) ( ). Unsurprisingly, PacBio HiFi reads can discover far more SVs compared to 15x Illumina paired-

end reads. However, the number of deletions, duplications and insertions we discover is comparable to recent studies such as
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gnomAD8 while we use lower sequencing depth. Coupled with the good precision, we conclude that our pipeline is in line with the

state of the art in the �eld.

To investigate the relationship between the different ethnic groups in Singapore, we performed principal component analysis (PCA)

using all variants (deletions, insertions, duplications and MEIs) genotypes using Hail69. Brie�y, monomorphic sites are removed prior

to Hard-Weinberg Equilibrium (HWE) normalization. Genotypes were normalized using HWE72. Lastly, we used the normalized

genotypes matrix for principal component estimation. We performed PCA on all samples in the discovery dataset. The results

indicate that PC1 and PC2 can segregate the individuals by their ethnic groups. We also performed PCA on all samples in the

discovery dataset for each variant type separately. The results obtained per variant type recapitulated the population structure when

all variants were analysed together.

We obtain the ancestry composition of 3 major studies with SV, namely 1) gnomAD-SV10 2) 1000 Genomes Project (1KG)12 3)

Centers for Common Disease Genomics (CCDG)8. Samples in gnomAD-SV were grouped into “EAS” (gnomAD-SV East Asian (EAS)

sample) and “Other” ( all other non-EAS sample), while 1KG was grouped into “EAS” (1KG’s sample found in superpopulation of East

Asian Ancestry (EAS) ), “SAS” (1KG’s sample found in superpopulation of South Asian Ancestry (SAS) ) and “Other” (1KG’s

superpopulation which are not EAS and SAS) and CCDG was grouped into “EAS” (CCDG’s sample of EAS ancestry), “SAS” (CCDG’s

sample of SAS ancestry) and “Other” (CCDG’s sample of non-EAS or non-SAS ancestry). SG10K-SV's sample were grouped into SG-

CHI (individuals of self-reported “Chinese” ancestry), SG-MAL (individuals of self-reported “Malay” ancestry) and SG-IND (individuals

of self-reported “Indian” ancestry). Sample count of each group was plotted in a stacked barplot for each project.

We obtained the hg38 lift-over gnomAD-SV callset from NCBI’s dbvar study “nstd166”.

We considered any SG10K-SV to be novel if no overlapping gnomAD-SV could be identi�ed using a approach similar to our svimmer-

based clustering of individual sample derived SV candidates, aggregating events across gnomAD-SV and SG10K-SV with svimmer27

default parameters.

To calculate the relative enrichment for genic and non-coding regions of the genome, we downloaded the ENCODE cCRE track73 and

gencode v4074 annotation from UCSC table browser.

First, we partitioned the SG10K-SV dataset into three groups (ultra-rare, rare and common) based on the allele frequency of the

variants using bcftools (version 1.16) �lter function. Ultra-rare variants are variants with AF < 0.001; rare variants are variants with AF

>= 0.001 and AF < 0.01 and lastly, common variants are variants with AF >= 0.01. The partitioned VCF �les were transformed into bed

�les with bcftools query and a custom script. To calculate the relative enrichment of SVs in non-coding cCRE regions, we retain only

variants that do not overlap any exons using bedtools (v2.30.0) intersect. Next, we count the number of variants which overlaps cCRE

regions and genic regions using bedtools intersect. Lastly, we performed permutation tests for the different cCRE regulatory elements

or genic regions that overlap SVs. For the permutation tests, the null distribution is calculated by the number of overlaps between

cCRE regulatory elements or genic regions and randomly shu�ed SV locations. We generated 10,000 random SV sets. For this

analysis, we required the coordinates of the shu�ed SVs to be within the same chromosome and non-overlapping. The enrichment

of a speci�c cCRE regulatory elements or gene region and SV overlap is expressed as the log2 fold change of the number of actual

SVs that overlap the speci�c regulatory or gene regions divided by the average of the null distribution. A positive log2 fold change

indicates an enrichment of SVs in the speci�c regulatory or gene region compared to a random null distribution, whereas a negative

log2 fold change indicates a depletion of SVs in the speci�c regulatory or gene region when compared against the null distribution.

Lastly, the p-value was calculated as follows:
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We annotated the SV VCF using SVTK45 v0.27.1-beta with default parameters to associated SVs with gencode release 40 genes and

transcripts. We focused on SVs that were annotated as loss of function (LOF), copy gain, duplications LOF (DUP_LOF). A deletion is

predicted as LOF when it overlap at least one exon of a gene. A duplication is predicted as LOF when both the start and end of the

duplication are contained within the exon of a gene. On the other hand, a duplication is annotated as DUP_LOF if a duplication

overlaps at least one exon of a gene. A duplication is annotated as copy gain if it spans the entire gene. Lastly, an insertion is

predicted as a LOF if a sequence is inserted into an exon.

To identify SVs affecting medically relevant genes, we annotated the SG10K-SV VCF using AnnotSV v3.2.347 with default parameters

to identify SVs overlapping with the genes listed in ACMG version 3.146.

To identify SV hotspot in the SG10K-SV dataset and gnomAD-SV dataset, we employed hotspotter from the primatR package39 with

the following parameters: (bandwidth:200,000, num.trial=10,000, pval=5 x10-3). To identify hotspots unique to our dataset, we used

bedtools75 intersect with the “-v” function to �nd hotspot regions that are absent in gnomAD.

To explore the relationship between SVs and SNPs, we conducted pairwise linkage disequilibrium (LD) analysis between each SV

and small variants identi�ed in SG10K_Health23 . We used PLINK76 to calculate the R2 value between each SV and all SNPs co-

localized within a 1Mbp window.

Known GWAS lead SNPs were retrieved from the NHGRI-EBI GWAS catalogue v1.0.2, only studies involving Asian individuals

containing cohorts were retained. Finally, we found SNPs in common between the �ltered NHGRI-EBI GWAS catalogue and SG10K-

SNP that were in high LD (R2 ≥ 0.8) with an SV in SG10K-SV.

We computed Fst values using the "hudson_fst" function from the "scikit allel" Python package. The calculation involved comparing

allele frequencies (AF) between pairs of populations. Speci�cally, we compared overall AFs in SG10K-SV-r1.3 to East Asian-speci�c

AFs within gnomAD when comparing events in SG10K-SV vs. gnomAD-SV. For SG10K-SV, we performed 3 pairwise comparisons , 1)

Chinese vs. Indian, 2) Chinese vs. Malay, and 3) Indian vs. Malay populations. The resulting Fst values were obtained for each pair

and the maximum Fst value was kept for each SG10K-SV event along with the annotation of which pair-wise comparison generated

the Fst value

Next, to assign p-values to each Fst value, we conducted permutation analysis. This involved preserving the original genotype matrix

while randomly shu�ing the ancestry labels.

For gnomAD-SV Fst calculation, we compared EAS versus the non-EAS ancestry group using the VCF downloaded from

https://ftp.ncbi.nlm.nih.gov/pub/dbVar/data/Homo_sapiens/by_study/genotype/nstd166/gnomad_v2.1_sv.sites.accessioned.vcf.gz

which contains the necessary tags of the ancestry group’s allele call type, for example the “EAS_N_HOMREF”, “EAS_N_HET” and

“EAS_N_HOMALT” tags representing East Asian’s number of sample called homozygous reference (hom_ref), heterozygous (het) and

homozygous alternate (hom_alt) allele respectively. With the count for each allele call type, we generated a "GenotypeArray” in "allel”

package with each element in the "GenotypeArray” being genotype status, [0,0] for hom_ref, [0,1] for het and [1,1] for hom_alt, based

on the count of EAS ancestry group allele call type and a similar "GenotypeArray” was produced for the non-EAS ancestry group. The

EAS "GenotypeArray” and non-EAS "GenotypeArray” was used to calculate the allele count for the 2 group with “count_alleles”

function and the generated allele count used to calculate Fst with “hudson_fst” function.

To generate the p-value for gnomAD-SV, we combine the EAS “GenotypeArray” and non-EAS “GenotypeArray” and noted the length, n,

of EAS “GenotypeArray”, we then shu�e the combined “GenotypeArray”, then split the shu�ed "GenotypeArray” into shu�ed EAS
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“GenotypeArray” with the �rst n genotype in the shu�ed "GenotypeArray” and the rest being shu�ed non-EAS “GenotypeArray”. We

calculated the Fst between this 2 shu�ed "GenotypeArray” and note down the Fst (Fst-shu�ed).

For both SG10K-SV and gnomAD-SV, we repeated the shu�ing process 1,000 times and determined the number of instances where

the observed Fst exceeded that of the real dataset, thus obtaining the p-value. We applied false discovery rate (FDR) correction

across the entire dataset to account for multiple comparisons.

Subsequently, we applied additional �ltering on the obtained FDR values to identify SVs with signi�cant Fst. Speci�cally, we focused

on events with an FDR threshold of less than 1% and an Fst value greater than the mean of the entire dataset.
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A: Number of Asian samples in SG10K-SV-r1.3 compared to (short-read derived) 1000 genomes SV, gnomAD-SV and CCDG reference

studies.

B:  SG10K-SV-r1.3 analysis pipeline diagram

C: Comparison of the number of duplications detected by Manta-Graphtyper and SurVIndel2

D: Scatterplot comparing the number of true positives detected duplication and FDR achieved with Manta-SVimmer-Graphtyper2 and

SurVindel2 for a truth set of high quality SVs obtained by haplotype-resolved long-read sequencing of a selected subset of 1000

Genomes Project analyzed samples34.

E: Number of SG10K-SV-r1.3 variants that overlap with gnomAD-SV.
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A: Violin plot showing the number of events per genome. DEL, deletions; DUP, duplications; INS, insertions (including MEIs).

B: Distribution of allele frequencies for different classes of SVs in the SG10K dataset. The majority of the SVs are rare variants (AF <

1%).

C: Size distribution of SVs detected from SG10K cohort. DEL, deletions; DUP, duplications; INS, insertions (including MEIs). Expected

Alu, SVA and LINE1 MEIs peaks at around 300bp, 2100bp and 6000bp, respectively.
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A. Enrichment or depletion of different classes of non-exonic SV in regulatory elements across allele frequency bins. Common

indicates variants with allele frequency ≥ 0.01; rare indicates variants with allele frequency ≥ 0.001 and allele frequency < 0.01; ultra-

rare variants refers to variants with allele frequency < 0.001.

B. Distribution of SVs (Deletions, Insertions, Duplications) disrupting gene centric features across allele frequency bins.  Ns indicates

not signi�cant p-value, * indicates p-value < 0.05, ** indicates p-value < 0.01, *** indicates p-value <0.001, **** indicates p-value <

0.0001.

C. in silico prediction of functional consequences of SVs segregated by allele frequencies.

D. Samplot of a 2,373 bp deletion event overlapping the TRDN gene region.
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A. Population structure revealed by PCA analysis of SG10K-SV-r1.3 genotype values. Each point corresponds to an individual,

coloured according to its ethnicity,  x and y axis represents the �rst two principal component respectively.

B. Proportion of SVs found in all, two or one populations.

C. Scatter plot of SV’s �xation index (Fst) as a function of their call rate.

D. Allele frequencies in Chinese, Indian and Malay for selected SV events with elevated �xation index (Fst).
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A. Tagging of SVs by SNPs: Distribution of the maximum R2 value to SNPs for each SV.

B. Candidate causal SV: Example of a deletion affecting exons 7 and 8 of the GBP3 gene, in high LD with a carotid artery intima

media thickness GWAS SNP in exon 10 of GBP3. The SNP is signi�cantly associated with carotid artery intima media thickness. LD

structure plots are shown for the three ethnicities. The star indicates the GWAS lead SNP and the black bar indicates the SV.

C. Candidate causal SV: Example of a deletion in TRIM48 gene, in high LD with an intergenic GWAS-lead SNP associated with altered

glomerular �ltration rate. The lines indicate LD between GWAS-lead SNP and deletion with r2 >= 0.8. The star indicates the GWAS

lead SNP and the black bar indicates the SV.
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